Knowing the product rule for inverse variation can be a real time-saver! Want to learn about it? Here's a tutorial that can help!
Looking for some practice with direct variation? Watch this tutorial, and get that practice! This tutorial shows you how to take given information and turn it into a direct variation equation. Then, see how to use that equation to find the value of one of the variables.
The constant of variation is the number that relates two variables that are directly proportional or inversely proportional to one another. But why is it called the constant of variation? This tutorial answers that question, so take a look!
Word problems allow you to see math in action! Take a look at this word problem involving an object's weight on Earth compared to its weight on the Moon. See how the formula for direct variation plays an important role in finding the solution. Then use that formula to see how much you would weigh on the Moon!
Ever heard of two things being directly proportional? Well, a good example is speed and distance. The bigger your speed, the farther you'll go over a given time period. So as one variable goes up, the other goes up too, and that's the idea of direct proportionality. But you can express direct proportionality using equations, and that's an important thing to do in algebra. See how to do that in the tutorial!
If two things are directly proportional, you can bet that you'll need to use the formula for direct variation to solve! In this tutorial, you'll see how to use the formula for direct variation to find the constant of variation and then solve for your answer.
If two things are inversely proportional, you can bet that you'll need to use the formula for inverse variation to solve! In this word problem, you'll see how to use the formula for inverse variation to find the constant of inverse variation and then solve for your answer.
Ever heard of two things being inversely proportional? Well, a good example is speed and time. The bigger your speed, the less time it takes to get to where you are going. So when one variable is big, the other is small, and that's the idea of inverse proportionality. But you can express inverse proportionality using equations, and that's an important thing to do in algebra. See how to do that in the tutorial!
If two things are inversely proportional, you can bet that you'll need to use the formula for inverse variation to solve! In this tutorial, you'll see how to use the formula for inverse variation to find the constant of inverse variation and then solve for your answer.