
www.VirtualNerd.com
How Do You Solve a Rational Equation With Binomials in the Denominator?
Solve for t: 1/(t+3)+2/t=9/(t+3)
Summary
- We need to exclude all the values for t that would make any of the denominators equal 0
- We need to find the least common denominator so that we can add the fractions

Notes
-
- Since we have variables in the denominators of fractions, we need to find excluded values for t
- Also, our fractions don't have common denominators
- So we'll need to find a least common denominator
-
- Excluded values are the values for t that would make one of the denominators equal 0
- Since you can't have 0 in the denominator, t cannot equal any of these values
-
- Since our fractions have different denominators, we need to find a least common denominator before we can add
-
- In order to get common denominators for all of our fractions, we need to multiply each one by something over itself
- Remember, anything over itself is just 1, so we're not actually changing the value of the fraction
-
- Now that our fractions have common denominators, we can just add the numerators
-
- Since the denominators are equal, the numerators must be equal as well
- So we can just set the numerators equal to each other to solve for t
- Since t does not equal either of our excluded values, -3 or 0, we can keep it as our answer
-
- Plug 1 in for t into the original equation to make sure we get a true statement
-
- Multiply 2/1 by 4/4 to get a common denominator of 4